
INTEGRAL TRANSFORM "INFIXING" METHOD FOR NONLINEAR TRANSIENT 

MASS-TRANSFER PROBLEMS 

A. D. Polyanin and V. V. Dil'man UDC 532.7 

An approximate method is proposed for solving nonlinear problems of transient 
mass transfer between a wall and a motionless fluid for an arbitrary concen- 
tration dependence of the diffusion coefficient. Nonlinear problems com- 
pounded with a volume or surface chemical reaction are investigated. 

i. DESCRIPTION OF THE METHOD 

Various integral transforms of an unknown function (Laplace-Carson, Mellin, Bessel, and 
other transforms [I]) are often used in the solution of linear problems; they can be written 
conditionally in the form 

u = L,c, (I) 

where c is the unknown function (inverse transform), L is a certain integral operator, and 
u is the transform. 

In particular, the Laplace-Carson transform is defined as 

u = p ( e-P*cd,, (2 )  
0 

where p i s  a complex p a r a m e t e r .  

In some cases  t r a n s f o r m s  of  t he  t ype  (1)  and (2) can a l s o  be used s u c c e s s f u l l y  f o r  the  
approx imate  a n a l y s i s  o f  n o n l i n e a r  bounda ry -va lue  problems by " i n f i x i n g "  the  t r a n s f o r m  in the  
argument of the function according to the rule [2, 3] 

L*/(@ ~_ [(L* O = :(u), (3)  

where f = f(c) is a certain nonlinear function of the argument c. 

The domain of validity of the approximate operation (3) must be established separately 
in each specific instance. We note, however, that this approach yields a correct asymptotic 
result at large times in transient problems whose solution stabilizes in the limit �9 + m. 
Moreover, the method ensures satisfaction of the initial and boundary conditions and gives 
an exact solution for linear problems. 

We now illustrate the application of the "infixing" of integral transforms in specific 
examples of independent interest. As usual, we focus mainly on the derivation of diffusion 
flux equations. 

2. MASS TRANSFER FOR AN ARBITRARY CONCENTRATION DEPENDENCE 
OF THE DIFFUSION COEFFICIENT 

We consider the transient problem of mass transfer between a wall and motionless medium 
for an arbitrary dependence of the diffusion coefficient D on the concentration C. 

The distribution of the concentration is described by the nonlinear equation 

_ _  _ _  ac 
ac = a D(c)--  (4) 
a~ Ox ax 
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subject to the initial and boundary conditions 

x = O ,  c=O;  x = O ,  c =  1; x -+o  o, c-~O. (5) 

Dimensionless variables are expressed here in terms of dimensioned variables by means of the 
relations 

C D (c) D (C) x X tD (0) 
c =  Ca D(Cs) a a z 

We take  the  L a p l a c e ~ a r s o n  t r ans fo rms  of  Eq. (4) and the  i n i t i a l  and boundary c o n d i t i o n s  
(5) .  I n f i x i n g  the  t r a n s f o r m  in the  argument of  t he  f u n c t i o n  D accord ing  to  r u l e  (3) ,  we have 

vu = a _~ (u) d~ 
ax - ~ x '  (6) 

x=O,  u = l ;  x-~oo, u-~O. (7) 

Making use of the  f a c t  t h a t  t he  o r d i n a r y  d i f f e r e n t i a l  equa t ion  (6) does not  depend ex- 
p l i c i t l y  on x, we lower its order by the standard substitution 

du ( od) 
w - -  dx ' dx du " (8 )  

As a result, we obtain 

d 
pu = w [D (u) w]. (9 )  

du 

It is directly verifiable that the general solution of this equation has the form 

u 

2p ] D(u)udu [~(u)wl2 + A, (10) 
0 

where A is an arbitrary constant. 

It follows from the boundary condition at infinity (7) that w = du/dx + 0 as x + ~.' 
Consequently, passing to the limit x + ~ in Eq. (i0), which corresponds to u = w = 0, we 
find the constant A = 0. 

Taking the foregoing considerations into account, we rewrite (i0) in the form 

g 

(.) e-L" = - F / 2 p  ~ ~ ( . ) . e . .  : ( n )  
dx 

0 

We now derive an equation for calculating the dimensionless diffusion flux at the wall 
j = -D(1) (3c/3X)x= 0. For this purpose we substitute x = 0 in both sides of Eq. (ii), which 
by virtue of the first boundary condition (7) corresponds to the value u = i. Then, taking 
the inverse Laplace-Carson transform, we arrive at the required approximate expression for 
the flux 

V 2 i 
] = ~ S ~(c)cdc. (12) 

0 

This equation gives the exact result for a constant diffusion coefficient. 

We estimate the error of Eq. (12) for certain specific concentration dependences of the 
diffusion coefficient. 

We first consider the nonlinear problem (4), (5) for 

D(c) = 1--c. (13) 
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It has been solved previously [4] and leads to the expression for the diffusion flux 

] = O, 332/ ] /7 .  

On the other hand, substituting Eq. (13) in (12), we obtain 

(14) 

1 0,326 (15)  
/ -  y g ~  ~ } / ~  

It follows from a comparison of relations (14) and (15) that the error of the proposed 
approximate method is less than 2% in the given situation. 

We now consider an exponential dependence of the diffusion coefficient on the concen- 
tration 

~(c) = exp { ~ ( c -  1)}. 
A numerically obtained solution of problem (4), (5), (16) 

ing equation is also proposed there for the diffusion flux: 
is given in [5]. 

(16) 

The follow- 

0,564 1 
i -  

1 + 0 ,177~  3/~-  ' 

which  " w o r k s "  w e l l  i n  t h e  i n t e r v a l  - 1 . 5  < ~ < 3 . 5 .  

S u b s t i t u t i n g  Eq. (16)  in  t h e  i n t e g r a n d  o f  Eq. ( 1 2 ) ,  we o b t a i n  

(17)  

1 

The dependences (18) and (17) are compared in Fig. 1 (solid and dashed curves, respec- 
tively). We see that the maximum disparity between these equations is ~4%. 

It is important to note that the outer problem (either steady-state or transient) of 
mass transfer between droplets or bubbles and laminar flow at large Peclet numbers leads to 
the equation and boundary conditions (4), (5) for an arbitrary concentration dependence of 
the diffusion coefficient [6, 7]. In this light, the results obtained above can be used to 
derive an approximate expression for calculating the average Sherwood number for droplets 
and bubbles: 

I/ Sh(D) = 2.[D(c)cdc., - -  (19)  
Sh(1) 0 

Here Sh(D) is the average_Sherwood number for an arbitrary concentration dependence of 
the diffusion coefficient D = D(c), and Sh(1) is the average Sherwood number for a constant 
diffusion coefficient D = i. 

3. TRANSIENT MASS TRANSFER COMPOUNDED WITH A VOLUME CHEMICAL REACTION 

We now consider mass transfer between a wall and a motionless medium with a chemical 
reaction taking place in its volume at the rate W v = KvFv(C). The corresponding transient 
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problem is formulated as follows in dimensionless variables: 

8c 8Zc 
. . . .  ~ d o  (c), 

a,~ ax z 

x = O ,  c = O ;  x--~O, c =  1; x--+oo, c--->-O, 

(20) 

where 

C a2KoF~(C~) F~(C) X Dt 
c = - - ,  ko , f o ( c ) - - - ,  x -  , x =  

C8 DC8 F~(C~) a a s 

We use  t h e  L a p l a c e - C a r s o n  t r a n s f o r m  (2)  f o r  t h e  a p p r o x i m a t e  s o l u t i o n  o f  t h i s  n o n l i n e a r  
p rob l e m,  I n f i x i n g  t h e  i n t e g r a l  o p e r a t o r  in  t h e  a rgument  o f  t h e  f u n c t i o n  f v  a c c o r d i n g  t o  r u l e  
( 3 ) ,  we o b t a i n  t h e  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  

d~u 
= pu + kdo (u), (2 l )  

OX 2 

x = 0 ,  u = l ;  x - ~ o o ,  u - ~ 0 .  (22)  

The i n t r o d u c t i o n  o f  t h e  new v a r i a b l e  w a c c o r d i n g  t o  Eq. (8 )  e n a b l e s  us t o  r e d u c e  t h e  
o r d e r  o f  Eq. ( 2 1 ) .  As a r e s u l t ,  we a r r i v e  a t  an e q u a t i o n  in  s e p a r a b l e  v a r i a b l e s ,  whose i n -  
t e g r a l  has  t h e  form 

Using Eq. 
the wall: 

du 
2 [ [ p u + k ~ f ~ ( u ) ] d t t = w  z, w =  (23)  

o J dx 

(23) and the boundary condition (22) at x = 0, we calculate the derivative at 

= -- p + 2k= J" [v (tt) du .  (24)  
~ X  x=O 0 

Now, taking the inverse Laplace-Carson transform of both sides of Eq. (24), we find the 
diffusion flux j = -(ac/Sx)x=0: 

e_~ 1 
i =  2ko Io(c)d . (25) 

0 

It is readily verified that the approximate functional relation (25) gives exact asymp- 
totic results for small and large values of the dimensions time T. In the other two limit- 
ing cases k v + 0 and k v § ~ Eq. (25) also gives the correct result. In addition, Eq. (25) 
is exact for a first-order reaction fv = c. 

4. TRANSIENT DIFFUSION COMPOUNDED WITH A SURFACE CHEMICAL REACTION 

Here we investigate the nonlinear problem of transient mass transfer between a motion- 
less fluid and a wall when a heterogeneous chemical reaction takes place on the surface of 
the latter at the rate W s = KsFs(C). We assume that the concentration in the volume of the 
fluid is constant and equal to C o at the initial time. The corresponding equation and ini- 
tial and boundary conditions for the concentration are written in the form 

dc c9~c 
- -  -- - -  (26) 

Ox Ox z ' 

x = O ,  c = O ;  x = O ,  --Oc =--kffs (C);  x -+oo ,  c--+O, ( 2 7 )  
c)x 

where the dimensionless variables are defined as 
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Co - -  C FDt X aK,F~ (Co) F, (C) 
c - - - ,  , x =  , , L ( c ) - - - -  

Co a ~ a OCo F~ (C0) 

Taking the  Laplace-Carson t r ans fo rms  (2) wi th  a l lowance fo r  r u l e  (3) ,  we a r r i v e  a t  the  
o r d i n a r y  d i f f e r e n t i a l  equa t ion  s u b j e c t  to  a n o n l i n e a r  boundary c o n d i t i o n  

d2-----~a = pu, (28 ) 
dx z 

x = O ,  - - d u  ksfs(u); x--+co, u--~O. (29) 
dx 

The g e n e r a l  s o l u t i o n  of  the  equa t ion  wi th  c o n s t a n t  c o e f f i c i e n t s  (28) s u b j e c t  to  the  ex- 
t i n c t i o n  c o n d i t i o n  a t  i n f i n i t y  (29) i s  given by the  equa t ion  

u = usexp (-- "l/px), (30) 

in which u s = Us(p) is the transform of the surface concentration, which is required to be 
determined in the course of solving the problem. 

Substituting Eq. (30) in the boundary condition (28) at x = 0, we obtain a nonlinear 
algebraic equation for the determination of Us: 

= k ,L  (uA. (3  l )  

Taking the inverse Laplace-Carson transform [i] and making use of the correspondence 
(3) f(u s) = L,f(Cs), we derive an integral equation for the surface concentration: 

d ~ cs(%)d~ = ks[s(cs). (32) 

This equation can be integrated numerically according to a scheme described by Gupalo 
et el. [8]. The diffusion flux is expressed in terms of the surface concentration according 
to the equation 

] = kffs (cs), ( 3 3  ) 

which is a consequence of the nonlinear boundary condition (27) on the wall at x = 0. 

It is important to note that the nonlinear integral equation (32), which was obtained 
by an approximate method, is exact for an arbitrary dependence fs = fs (c)- We now prove this 
assertion. 

Taking the Laplace-~arson transform of the linear equation (26) with allowance for the 
initial condition (27), we arrive at an equation for the transform (28). A solution of this 
equation, extinct at infinity, is given by Eq. (30). Accordingly, for the transform of the 
diffusion flux we have 

(34) 

Taking the inverse Laplace-Carson transform of both sides of this equation, we find the 
relation between the surface concentration and its derivative at the wall 

( ac ) _ d i cs(~')dX (35) 
x=0 

Now, using this expression to eliminate the quantity (Sc/SX)x= 0 from the nonlinear 
boundary condition at the wall (27), we arrive at Eq. (32), Q. E. D. 

NOTATION 

a, linear space scale; C, concentration; Cs, surface concentration on wall; Co, concen- 
tration at initial time; c, dimensionless concentration; D, diffusion coefficient D = D(C); 

1165 



j, dimensionless diffusion flux onto wall; Ks, rate constant of surface chemical reaction; 
Kv, rate constant of volume chemical reaction; t, time; X, distance from wall. 
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ELECTROTHERMAL ANALOGY IN HEREDITARY MEDIA AND ITS APPLICATION 

I. A. Novikov UDC 536.2 

An electrothermal analogy (ETA) is established for the most common media 
with a thermal memory. The problem of intensifying thermal perturbations 
in a system consisting of a plate and a semiinfinite body is examined. 

It is currently possible to distinguish a broad range of nonequilibrium physical phe- 
nomena in which heat transfer processes cannot be adequately described on the basis of the 
linear Fourier gradient relation. These cases include the following: heat transfer in liq- 
uid helium [i, 2]; heat transfer in media with energy carriers having a low concentration 
(in low-density gases [3]); heat transfer at low temperatures in crystals and semiconductors 
by second sound, ballistic phonons, etc. [4-7]; transport phenomena described within the 
framework of a two-temperature model (in a nonequilibrium gas [8], hot electrons in semicon- 
ductors [5, 6]). Mastery of thin-film and laser technologies also requires that allowance 
be made for memory effects in heat transfer. Similar problems are even more important in 
mass-transfer processes, where the relaxation time of the processes is several orders greater 
than in the case of heat transfer. For example, the study [9] described lag effects in vari- 
ous forms of mass transfer (adsorption, drying, heterogeneous catalysis, diffusion processing 
of porous bodies). Besides transport processes under extreme conditions, it is also possible 
to see deviations of heat transfer from the Fourier relation under normal conditions for me- 
dia having a complex structure (polycrystalline materials, polymers, liquid crystals, etc.). 
Thus, a relaxational effect has been observed [i0] in the high-temperature heat capacity of 
tungsten, this effect being due to the existence of high concentrations of point defects in 
the metal. The above-mentioned classes of phenomena and materials can be described at the 
phenomenological level in terms of heat transfer in hereditary media on the basis of integral 
governing relations (GR) [ii, 12] with relaxation functions (RF) Iz(t), cl(t) for heat flux 
and internal energy. These functions account for the history of the thermal process. In 
the particular case of RFs of the form I l = i - exp(-t/T0); cz(t) T H(t), the GRs [ii, 12] 
describe the hypothesis of relaxation of the thermal stress q + ~0q = -10Vu, leading to a 
hyperbolic heat-conduction equation. The Maxwell relaxation time t 0 in solids at normal 
temperature has the value 10-9-10 -11 sec [13]. Thus, its effect on heat transfer should be 
considered when a material is subjected to a laser pulse of nanosecond duration [14, 15]. 
At low temperatures, ~0 may increase by several orders [5] and have a more significant el- 
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